Seguridad de la vacunación COVID-19 en una muestra de pacientes brasileños con lupus eritematoso sistémico

  • Bianca Lins Alencar Escuela Evangélica de Medicina Mackenzie de Paraná, Curitiba, Brasil
  • Valentina Busato Escuela Evangélica de Medicina Mackenzie de Paraná, Curitiba, Brasil
  • Renato Nisihara Escuela Evangélica de Medicina Mackenzie de Paraná, Curitiba, Brasil
  • Thelma Larocca Skare Escuela Evangélica de Medicina Mackenzie de Paraná, Curitiba, Brasil
Palabras clave: lupus eritematoso sistémico, COVID-19, vacunas, seguridad

Resumen

Objetivos: estudiar los efectos secundarios y el riesgo de exacerbación de la enfermedad después de la vacunación COVID-19 en una muestra de pacientes con lupus eritematoso sistémico (LES). Materiales y métodos: este estudio retrospectivo que investigó 101 pacientes con LES. Se determinó la actividad de la enfermedad mediante el Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) antes y después de dos dosis de vacuna contra SAR-COv-2. Se registraron los efectos secundarios después de la vacunación. Resultados: los pacientes que recibieron dos dosis de la misma vacuna fueron el 10,3% para CoronaVAc, el 42,2% para Pfizer y el 47,3% para AstraZeneca. Se detectaron efectos secundarios en el 76,2% y la mayoría fue leve/moderado. Los más frecuentes fueron: dolor local (62,3%), cefalea (36,6%) y fatiga (34,6%). El cambio en la mediana del SLEDAI antes de la primera dosis y después de la segunda no fue estadísticamente significativa (p=0,68). Solo el 4,1% de los individuos aumentó el SLEDAI ≥ de 3 puntos. Conclusiones: la vacunación contra la COVID-19 fue bien tolerada y segura en pacientes con LES.

Biografía del autor/a

Bianca Lins Alencar, Escuela Evangélica de Medicina Mackenzie de Paraná, Curitiba, Brasil
Escuela Evangélica de Medicina Mackenzie de Paraná
Valentina Busato, Escuela Evangélica de Medicina Mackenzie de Paraná, Curitiba, Brasil
Escuela Evangélica de Medicina Mackenzie de Paraná
Renato Nisihara, Escuela Evangélica de Medicina Mackenzie de Paraná, Curitiba, Brasil
Escuela Evangélica de Medicina Mackenzie de Paraná
Thelma Larocca Skare, Escuela Evangélica de Medicina Mackenzie de Paraná, Curitiba, Brasil
Escuela Evangélica de Medicina Mackenzie de Paraná

Citas

I. Rasking L, Roelens C, Sprangers B, Thienpont B, Nawrot TS, De Vusser K. Lupus, DNA methylation, and air pollution: A malicious triad. Int J Environ Res Public Health 2022;19:15050. doi: 10.3390/ijerph192215050.

II. Pan Q, Guo F, Huang Y, Li A, Chen S, Chen J, et al. Gut microbiota dysbiosis in systemic lupus erythematosus: novel insights into mechanisms and promising therapeutic strategies. Front Immunol 2021; 12:799788. doi: 10.3389/fimmu.2021.799788.

III. Zhang W, Reichlin M. A Possible link between infection with Burkholderia bacteria and systemic lupus erythematosus based on epitope mimicry. Clin Dev Immunol 2008; 2008:683489. doi: 10.1155/2008/683489.

IV. Blank M, Barzilai O, Shoenfeld Y. Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol 2007;32:111–8. doi: 10.1007/BF02686087.

V. Sun F, Chen Y, Wu W, Guo L, Xu W, Chen J, et al. Varicella zoster virus infections increase the risk of disease flares in patients with SLE: a matched cohort study. Lupus Sci Med 2019;6:e000339. doi: 10.1136/lupus-2019-000339.

VI. Pope JE, Krizova A, Ouimet JM, Goodwin JL, Lankin M. Close association of Herpes Zoster reactivation and systemic lupus erythematosus (SLE) diagnosis: case-control study of patients with SLE or noninflammatory musculoskeletal disorders. J Rheumatol 2004;31:274-9. PMID: 14760796.

VII. Cunha BA, Gouzhva O, Nausheen S. Severe cytomegalovirus (CMV) community-acquired pneumonia (CAP) precipitating a systemic lupus erythematosus (SLE) flare. Heart Lung 2009;38:249–52. doi: 10.1016/j.hrtlng.2008.07.001.

VIII. Janahi EMA, Das S, Bhattacharya SN, Haque S, Akhter N, Jawed A, et al. Cytomegalovirus aggravates the autoimmune phenomenon in systemic autoimmune diseases. Microb Pathog 2018;120:132–9. doi: 10.1016/j.micpath.2018.04.041.

IX. Sun F, Chen Y, Wu W, Guo L, Xu W, Chen J, et al. Varicella zoster virus infections increase the risk of disease flares in patients with SLE: a matched cohort study. Lupus Sci Med 2019;29:e000339. doi: 10.1136/lupus-2019-000339.

X. Soldevilla HF, Briones SF, Navarra SV. Systemic lupus erythematosus following HPV immunization or infection? Lupus 2012;21:158-61. doi: 10.1177/0961203311429556.

XI. Chen J, Li F, TianJ, Xie X, Tang Q, Chen Y, et al. Varicella Zoster virus reactivation following covid-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: A cross-sectional Chinese study of 318 cases. J Med Virol 2022;13:e28307. doi: 10.1002/jmv.28307.

XII. Barber MRW, Clarke AE. Systemic lupus erythematosus and risk of infection. Expert Rev Clin Immunol 2020;16:527-538. doi: 10.1080/1744666X.2020.1763793.

XIII. Navarra SV, Leynes MS. Infections in systemic lupus erythematosus. Lupus 2010;19:1419-24. doi: 10.1177/0961203310374486.

XIV. Yee C-S, Farewell VT, Isenberg DA, Griffiths B, The L-S, Bruce IN et al. The use of systemic lupus erythematosus disease activity index-2000 to define active disease and minimal clinically meaningful change based on data from a large cohort of systemic lupus erythematosus patients. Rheumatology (Oxford) 2011;50:982–8. doi: 10.1093/rheumatology/keq376.

XV. Ma L, Zeng A, Chen B, Chen Y, Zhou R. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in patients with systemic lupus erythematosus and their correlation with activity: A meta-analysis. Int Immunopharmacol 2019;76:105949. doi: 10.1016/j.intimp.2019.105949.

XVI. Petri M, Buyon J, Kim M. Classification, and definition of major flares in SLE clinical trials. Lupus 1999;8:685-91. doi: 10.1191/096120399680411281.17.

XVII. Naveen R, Nikiphorou E, Joshi M, Sen P, Lindblom J, Agarwal V, et al. Safety and tolerance of vaccines against SARS-CoV-2 infection in systemic lupus erythematosus: results from the COVAD study. Rheumatology (Oxford) 2022;keac661. doi: 10.1093/rheumatology/keac661.

XVIII. Abu-Shakra M. Safety of vaccination of patients with systemic lupus erythematosus. Lupus 2009;18:1205-8. doi: 10.1177/0961203309346507.

XIX. Garg M, Mufti N, Palmore TN, Hasni SA. Recommendations and barriers to vaccination in systemic lupus erythematosus. Autoimmun Rev 2018;17:990-1001. doi: 10.1016/j.autrev.2018.04.006.

XX. Agmon-Levin N, Arango MT, Kivity S, Katzav A, Gilburd B, Blank M, et al. Immunization with hepatitis B vaccine accelerates SLE like disease in a murine model. J Autoimmun 2014;54:21–32. doi: 10.1016/j.jaut.2014.06.006.

XXI. Agmon-Levin N, Zafrir Y, Paz Z, Shilton T, Zandman-Goddard G, Shoenfeld Y. Ten cases of systemic lupus erythematosus related to hepatitis B vaccine. Lupus 2009;18:1192-7. doi: 10.1177/0961203309345732.

XXII. Kuruma KA, Borba EF, Lopes MH, de Carvalho JF, Bonfa E. Safety and efficacy of hepatitis B vaccine in systemic lupus erythematosus. Lupus 2007;16:350-4. doi: 10.1177/0961203307078225.

XXIII. Geier DA, Geier MR. Quadrivalent human papillomavirus vaccine and autoimmune adverse events: a case-control assessment of the vaccine adverse event reporting system (VAERS) database. Immunol Res 2017;65:46-54. doi: 10.1007/s12026-016-8815-9.

XXIV. Geier DA, Geier MR. A case-control study of quadrivalent human papillomavirus vaccine-associated autoimmune adverse events. Clin Rheumatol 2015;34:1225-31. doi: 10.1007/s10067-014-2846-1.

XXV. Kayesh MEH, Kohara M, Tsukiyama-Kohara K. An overview of recent insights into the response of TLR to SARS-COV-2 infection and the potential of TLR agonists as SARS- 582 CoV-2 vaccine adjuvants. Viruses 2021;13:2302. doi: 10.3390/v13112302.

XXVI. Uddin K, Mohamed KH, Agboola AA, Naqvi WA, Hussaini H, Mohamed AS. Antineutrophil cytoplasmic antibody (ANCA)-associated renal vasculitis following COVID-19 vaccination. A case report and literature review. Cureus 2022;14:e30206. doi: 10.7759/cureus.30206.

XXVII. Ding Y, Ge Y. Inflammatory myopathy following coronavirus disease 2019 vaccination: A systematic review. Front Public Health 2022;10:1007637. doi: 10.3389/fpubh.2022.1007637.

XXVIII. Jafarzadeh A, Jafarzadeh S, Pardehshenas M, Nemati M, Mortazavi SMJ. Development and exacerbation of autoimmune hemolytic anemia following COVID-19 vaccination: A systematic review. Int J Lab Hematol 2022 Oct 8. doi: 10.1111/ijlh.13978. Online ahead of print.

XXIX. Ramanan S, Singh H, Menon P, Patel PM, Parmar V, Malik D. Thrombotic thrombocytopenic purpura after Ad6.COV2. S vaccination. Cureus 2022;14:e28592. doi: 10.7759/cureus.28592.

XXX. Zhou Y, Han T, Chen J, Hou C, Hua L, He S, et al. Clinical and autoimmune characteristics of severe and critical cases of COVID-19. Clin Transl Sci 2020;13:1077-1086. doi: 10.1111/cts.12805.

XXXI. Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020;12: eabd3876. doi 10.1126/scitranslmed.abd3876.

XXXII. Xu C, Fan J, Luo Y, Zhao Z, Tang P, Yang G, et al. Prevalence and characteristics of rheumatoid-associated autoantibodies in patients with COVID-19. J Inflamm Res 2021;14:3123-3128. doi: 10.2147/JIR.S312090.

XXXIII. Felten R, Kawka L, Dubois M, Ugarte-Gil MF, Fuentes-Silva Y, Piga M et al. Tolerance of COVID-19 vaccination in patients with systemic lupus erythematosus: the international VACOLUP study. Lancet Rheumatol 2021;3:e613-e615. doi: 10.1016/S2665-9913(21)00221-6.

XXXIV. Moyon Q, Sterlin D, Miyara M, Anna F, Mathian A, Lhote R, et al. BNT162b2 vaccine-induced humoral and cellular responses against SARS-CoV-2 variants in systemic lupus erythematosus. Ann Rheum Dis 2022;81:575–83. doi: 10.1136/annrheumdis-2021-221097.

XXXV. Izmirly PM, Kim MY, Samanovic M, Fernandez-Ruiz R, Ohana S, Deonaraine KK, et al. Evaluation of immune response and disease status in systemic lupus erythematosus patients following SARS-CoV-2 vaccination. Arthritis Rheumatol 2022;74:284-294. doi: 10.1002/art.41937.

XXXVI. Mok CC, Chan KL, Tse SM. Hesitancy for SARS-CoV-2 vaccines and post-vaccination flares in patients with systemic lupus erythematosus. Vaccine 2022;40:5959-5964. doi: 10.1016/j.vaccine.2022.08.068.

XXXVII. Barbari A. COVID-19 vaccine concerns: Fact or fiction? Exp Clin Transplant. 2021;19:627-634. doi: 10.6002/ect.2021.0056.

XXXVIII. Khairy Y, Naghibi D, Moosavi A, Sardareh M, Azami-Aghdash S. Prevalence of hypertension and associated risks in hospitalized patients with COVID-19: a meta-analysis of meta-analyses with 1468 studies and 1,281,510 patients. Syst Rev 2022;11:242. doi: 10.1186/s13643-022-02111-2.

XXXIX. Tan SYS, Yee AM, Sim JJL, Lim CC. COVID-19 vaccination in systemic lupus erythematosus: a systematic review of its effectiveness, immunogenicity, flares and acceptance. Rheumatology (Oxford) 2023; 62(5):1757-1772. doi: 10.1093/rheumatology/keac604.

Publicado
2024-03-26
Cómo citar
1.
Alencar BL, Busato V, Nisihara R, Larocca Skare T. Seguridad de la vacunación COVID-19 en una muestra de pacientes brasileños con lupus eritematoso sistémico. Rev. Argent. Reumatol. [Internet]. 26 de marzo de 2024 [citado 18 de enero de 2025];35(1):11 -6. Disponible en: https://ojs.reumatologia.org.ar/index.php/revistaSAR/article/view/791
Sección
Artículo Original