Seguridad de la vacunación COVID-19 en una muestra de pacientes brasileños con lupus eritematoso sistémico
Resumen
Objetivos: estudiar los efectos secundarios y el riesgo de exacerbación de la enfermedad después de la vacunación COVID-19 en una muestra de pacientes con lupus eritematoso sistémico (LES). Materiales y métodos: este estudio retrospectivo que investigó 101 pacientes con LES. Se determinó la actividad de la enfermedad mediante el Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) antes y después de dos dosis de vacuna contra SAR-COv-2. Se registraron los efectos secundarios después de la vacunación. Resultados: los pacientes que recibieron dos dosis de la misma vacuna fueron el 10,3% para CoronaVAc, el 42,2% para Pfizer y el 47,3% para AstraZeneca. Se detectaron efectos secundarios en el 76,2% y la mayoría fue leve/moderado. Los más frecuentes fueron: dolor local (62,3%), cefalea (36,6%) y fatiga (34,6%). El cambio en la mediana del SLEDAI antes de la primera dosis y después de la segunda no fue estadísticamente significativa (p=0,68). Solo el 4,1% de los individuos aumentó el SLEDAI ≥ de 3 puntos. Conclusiones: la vacunación contra la COVID-19 fue bien tolerada y segura en pacientes con LES.Citas
I. Rasking L, Roelens C, Sprangers B, Thienpont B, Nawrot TS, De Vusser K. Lupus, DNA methylation, and air pollution: A malicious triad. Int J Environ Res Public Health 2022;19:15050. doi: 10.3390/ijerph192215050.
II. Pan Q, Guo F, Huang Y, Li A, Chen S, Chen J, et al. Gut microbiota dysbiosis in systemic lupus erythematosus: novel insights into mechanisms and promising therapeutic strategies. Front Immunol 2021; 12:799788. doi: 10.3389/fimmu.2021.799788.
III. Zhang W, Reichlin M. A Possible link between infection with Burkholderia bacteria and systemic lupus erythematosus based on epitope mimicry. Clin Dev Immunol 2008; 2008:683489. doi: 10.1155/2008/683489.
IV. Blank M, Barzilai O, Shoenfeld Y. Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol 2007;32:111–8. doi: 10.1007/BF02686087.
V. Sun F, Chen Y, Wu W, Guo L, Xu W, Chen J, et al. Varicella zoster virus infections increase the risk of disease flares in patients with SLE: a matched cohort study. Lupus Sci Med 2019;6:e000339. doi: 10.1136/lupus-2019-000339.
VI. Pope JE, Krizova A, Ouimet JM, Goodwin JL, Lankin M. Close association of Herpes Zoster reactivation and systemic lupus erythematosus (SLE) diagnosis: case-control study of patients with SLE or noninflammatory musculoskeletal disorders. J Rheumatol 2004;31:274-9. PMID: 14760796.
VII. Cunha BA, Gouzhva O, Nausheen S. Severe cytomegalovirus (CMV) community-acquired pneumonia (CAP) precipitating a systemic lupus erythematosus (SLE) flare. Heart Lung 2009;38:249–52. doi: 10.1016/j.hrtlng.2008.07.001.
VIII. Janahi EMA, Das S, Bhattacharya SN, Haque S, Akhter N, Jawed A, et al. Cytomegalovirus aggravates the autoimmune phenomenon in systemic autoimmune diseases. Microb Pathog 2018;120:132–9. doi: 10.1016/j.micpath.2018.04.041.
IX. Sun F, Chen Y, Wu W, Guo L, Xu W, Chen J, et al. Varicella zoster virus infections increase the risk of disease flares in patients with SLE: a matched cohort study. Lupus Sci Med 2019;29:e000339. doi: 10.1136/lupus-2019-000339.
X. Soldevilla HF, Briones SF, Navarra SV. Systemic lupus erythematosus following HPV immunization or infection? Lupus 2012;21:158-61. doi: 10.1177/0961203311429556.
XI. Chen J, Li F, TianJ, Xie X, Tang Q, Chen Y, et al. Varicella Zoster virus reactivation following covid-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: A cross-sectional Chinese study of 318 cases. J Med Virol 2022;13:e28307. doi: 10.1002/jmv.28307.
XII. Barber MRW, Clarke AE. Systemic lupus erythematosus and risk of infection. Expert Rev Clin Immunol 2020;16:527-538. doi: 10.1080/1744666X.2020.1763793.
XIII. Navarra SV, Leynes MS. Infections in systemic lupus erythematosus. Lupus 2010;19:1419-24. doi: 10.1177/0961203310374486.
XIV. Yee C-S, Farewell VT, Isenberg DA, Griffiths B, The L-S, Bruce IN et al. The use of systemic lupus erythematosus disease activity index-2000 to define active disease and minimal clinically meaningful change based on data from a large cohort of systemic lupus erythematosus patients. Rheumatology (Oxford) 2011;50:982–8. doi: 10.1093/rheumatology/keq376.
XV. Ma L, Zeng A, Chen B, Chen Y, Zhou R. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in patients with systemic lupus erythematosus and their correlation with activity: A meta-analysis. Int Immunopharmacol 2019;76:105949. doi: 10.1016/j.intimp.2019.105949.
XVI. Petri M, Buyon J, Kim M. Classification, and definition of major flares in SLE clinical trials. Lupus 1999;8:685-91. doi: 10.1191/096120399680411281.17.
XVII. Naveen R, Nikiphorou E, Joshi M, Sen P, Lindblom J, Agarwal V, et al. Safety and tolerance of vaccines against SARS-CoV-2 infection in systemic lupus erythematosus: results from the COVAD study. Rheumatology (Oxford) 2022;keac661. doi: 10.1093/rheumatology/keac661.
XVIII. Abu-Shakra M. Safety of vaccination of patients with systemic lupus erythematosus. Lupus 2009;18:1205-8. doi: 10.1177/0961203309346507.
XIX. Garg M, Mufti N, Palmore TN, Hasni SA. Recommendations and barriers to vaccination in systemic lupus erythematosus. Autoimmun Rev 2018;17:990-1001. doi: 10.1016/j.autrev.2018.04.006.
XX. Agmon-Levin N, Arango MT, Kivity S, Katzav A, Gilburd B, Blank M, et al. Immunization with hepatitis B vaccine accelerates SLE like disease in a murine model. J Autoimmun 2014;54:21–32. doi: 10.1016/j.jaut.2014.06.006.
XXI. Agmon-Levin N, Zafrir Y, Paz Z, Shilton T, Zandman-Goddard G, Shoenfeld Y. Ten cases of systemic lupus erythematosus related to hepatitis B vaccine. Lupus 2009;18:1192-7. doi: 10.1177/0961203309345732.
XXII. Kuruma KA, Borba EF, Lopes MH, de Carvalho JF, Bonfa E. Safety and efficacy of hepatitis B vaccine in systemic lupus erythematosus. Lupus 2007;16:350-4. doi: 10.1177/0961203307078225.
XXIII. Geier DA, Geier MR. Quadrivalent human papillomavirus vaccine and autoimmune adverse events: a case-control assessment of the vaccine adverse event reporting system (VAERS) database. Immunol Res 2017;65:46-54. doi: 10.1007/s12026-016-8815-9.
XXIV. Geier DA, Geier MR. A case-control study of quadrivalent human papillomavirus vaccine-associated autoimmune adverse events. Clin Rheumatol 2015;34:1225-31. doi: 10.1007/s10067-014-2846-1.
XXV. Kayesh MEH, Kohara M, Tsukiyama-Kohara K. An overview of recent insights into the response of TLR to SARS-COV-2 infection and the potential of TLR agonists as SARS- 582 CoV-2 vaccine adjuvants. Viruses 2021;13:2302. doi: 10.3390/v13112302.
XXVI. Uddin K, Mohamed KH, Agboola AA, Naqvi WA, Hussaini H, Mohamed AS. Antineutrophil cytoplasmic antibody (ANCA)-associated renal vasculitis following COVID-19 vaccination. A case report and literature review. Cureus 2022;14:e30206. doi: 10.7759/cureus.30206.
XXVII. Ding Y, Ge Y. Inflammatory myopathy following coronavirus disease 2019 vaccination: A systematic review. Front Public Health 2022;10:1007637. doi: 10.3389/fpubh.2022.1007637.
XXVIII. Jafarzadeh A, Jafarzadeh S, Pardehshenas M, Nemati M, Mortazavi SMJ. Development and exacerbation of autoimmune hemolytic anemia following COVID-19 vaccination: A systematic review. Int J Lab Hematol 2022 Oct 8. doi: 10.1111/ijlh.13978. Online ahead of print.
XXIX. Ramanan S, Singh H, Menon P, Patel PM, Parmar V, Malik D. Thrombotic thrombocytopenic purpura after Ad6.COV2. S vaccination. Cureus 2022;14:e28592. doi: 10.7759/cureus.28592.
XXX. Zhou Y, Han T, Chen J, Hou C, Hua L, He S, et al. Clinical and autoimmune characteristics of severe and critical cases of COVID-19. Clin Transl Sci 2020;13:1077-1086. doi: 10.1111/cts.12805.
XXXI. Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020;12: eabd3876. doi 10.1126/scitranslmed.abd3876.
XXXII. Xu C, Fan J, Luo Y, Zhao Z, Tang P, Yang G, et al. Prevalence and characteristics of rheumatoid-associated autoantibodies in patients with COVID-19. J Inflamm Res 2021;14:3123-3128. doi: 10.2147/JIR.S312090.
XXXIII. Felten R, Kawka L, Dubois M, Ugarte-Gil MF, Fuentes-Silva Y, Piga M et al. Tolerance of COVID-19 vaccination in patients with systemic lupus erythematosus: the international VACOLUP study. Lancet Rheumatol 2021;3:e613-e615. doi: 10.1016/S2665-9913(21)00221-6.
XXXIV. Moyon Q, Sterlin D, Miyara M, Anna F, Mathian A, Lhote R, et al. BNT162b2 vaccine-induced humoral and cellular responses against SARS-CoV-2 variants in systemic lupus erythematosus. Ann Rheum Dis 2022;81:575–83. doi: 10.1136/annrheumdis-2021-221097.
XXXV. Izmirly PM, Kim MY, Samanovic M, Fernandez-Ruiz R, Ohana S, Deonaraine KK, et al. Evaluation of immune response and disease status in systemic lupus erythematosus patients following SARS-CoV-2 vaccination. Arthritis Rheumatol 2022;74:284-294. doi: 10.1002/art.41937.
XXXVI. Mok CC, Chan KL, Tse SM. Hesitancy for SARS-CoV-2 vaccines and post-vaccination flares in patients with systemic lupus erythematosus. Vaccine 2022;40:5959-5964. doi: 10.1016/j.vaccine.2022.08.068.
XXXVII. Barbari A. COVID-19 vaccine concerns: Fact or fiction? Exp Clin Transplant. 2021;19:627-634. doi: 10.6002/ect.2021.0056.
XXXVIII. Khairy Y, Naghibi D, Moosavi A, Sardareh M, Azami-Aghdash S. Prevalence of hypertension and associated risks in hospitalized patients with COVID-19: a meta-analysis of meta-analyses with 1468 studies and 1,281,510 patients. Syst Rev 2022;11:242. doi: 10.1186/s13643-022-02111-2.
XXXIX. Tan SYS, Yee AM, Sim JJL, Lim CC. COVID-19 vaccination in systemic lupus erythematosus: a systematic review of its effectiveness, immunogenicity, flares and acceptance. Rheumatology (Oxford) 2023; 62(5):1757-1772. doi: 10.1093/rheumatology/keac604.
Derechos de autor 2024 a nombre de los autores. Derechos de reproducción: Sociedad Argentina de Reumatología
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.